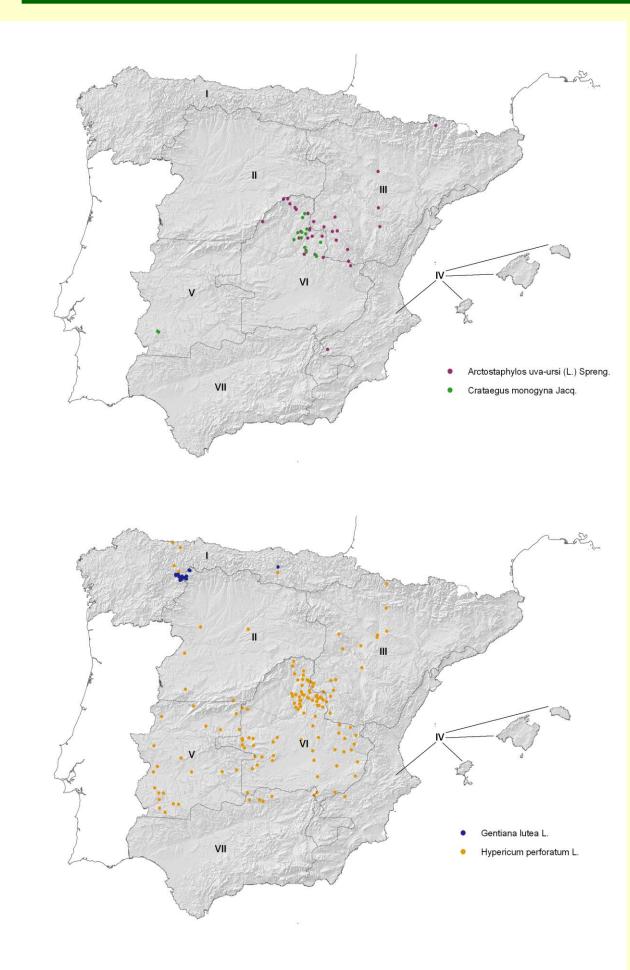
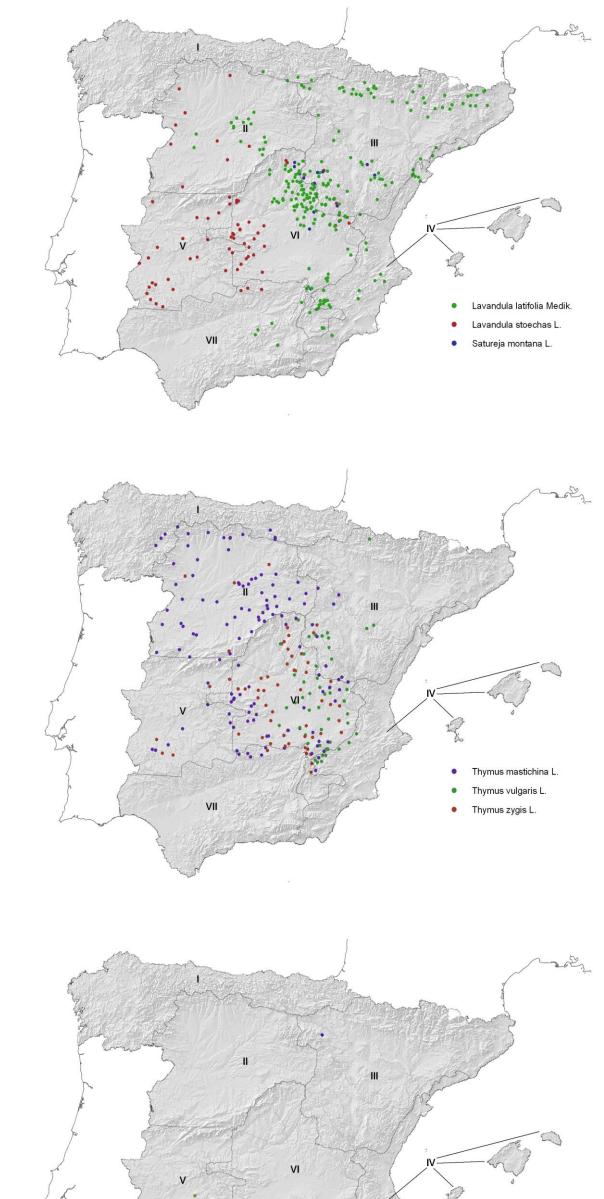


Bioprospecting: genetic resources of medicinal and aromatic plants in Spain


Varela, F.¹, Navarrete, P.¹, Pérez, B.¹, Pérez-Mao, D.¹, López-Cepero, P.¹, Hernán, G.¹, Cuadrado, J.², Herraiz, D.², Usano-Alemany, J.², Sotomayor, J.A.³, Jordán, M.J.³, Cristobal, R.⁴, Fanlo, M.⁴, Melero, R.⁴, Moré, E.⁴, Cabot, P.⁵, Asensio S.-Manzanera, M.C.⁶, Asensio Vegas, C.⁶, Martín, H.⁶, Herrero, B.⁷, Fernández, M.⁸, Peluzzo, A.⁸, González Benito, M.E.⁹, Pérez, F.⁹, Sánchez, D.¹⁰, Cases, M.A.¹

¹ MA-INIA. Apdo. 8111. 28040 Madrid. varela@inia.es. ² CCEA. Ctra. Tarancón Km7. 16194 Albadalejito (Cuenca). ³ IMIDA. C/ Mayor s/n. 30150 La Alberca (Murcia). ⁴ CTFC. Ctra. St. Llorenç de Morunys km2 25280 Solsona (Lleida). ⁵ IRTA. Ctra. de Cabrils s/n. 08348 Cabrils (Barcelona). ⁶ ITACYL, Ctra. Burgos km 119, Finca Zamadueñas, 47071 Valladolid. ⁷ ETSIA. Avda. de Madrid 57. 34004 Palencia. ⁸ CRF-INIA. Apdo. 1045. 28800 Alcalá de Henares (Madrid). ⁹ EUITA. Ciudad Universitaria. 28040 Madrid. ¹⁰ CIFOR-INIA. Apdo. 8111. 28040 Madrid.

OBJECTIVES

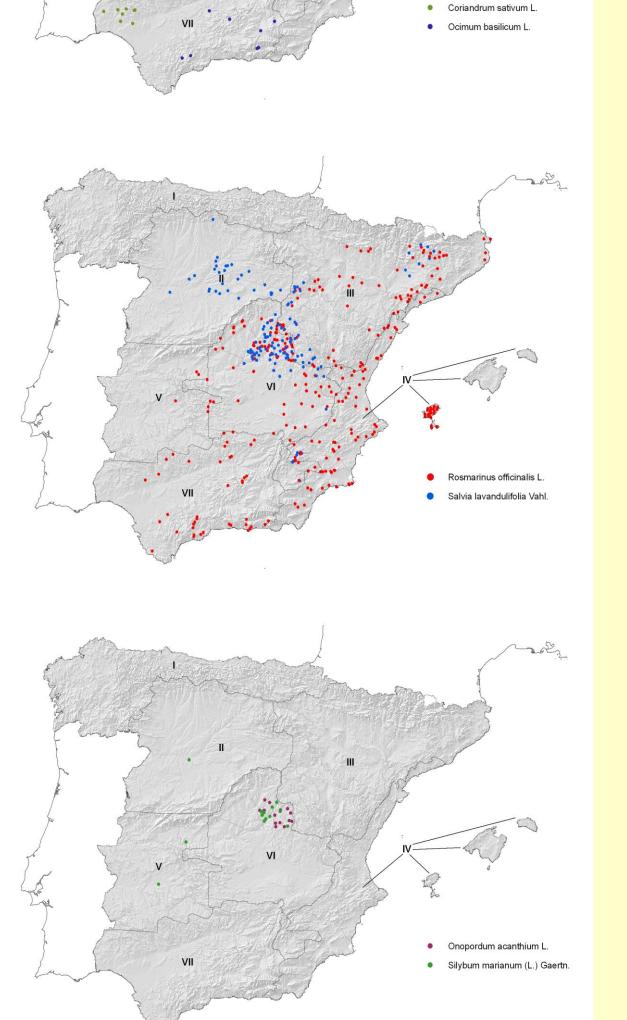

- Prospection of wild aromatic and medicinal populations from different regions and seed collecting for its conservation in gene banks.
- **Collecting of plant material for its chemical characterization.**
- Distribution maps elaboration of the chemotypes from the wild species studied according to their richness in active compounds.

- Initiate breeding actions from the wild aromatic and medicinal populations according to their morphologic and chemical characteristics.
- Providing an incentive for biodiversity conservation by adding value to natural resources as biochemical resources.

Species	Samples collected	Studies performed
Arctostaphylos uva-ursi (L.) Spreng	34	С
Coriandrum sativum L	34	С
Crataegus monogyna Jacq.	15	A C
Gentiana lutea L	44	A B C
Hypericum perforatum L.	145	A B C
Lavandula latifolia Medik	281	A B C
Lavandula stoechas L.	76	B C
Ocimum basilicum L.	11	С
Onopordum acanthium L	14	A C
Rosmarinus officinalis L.	354	A C
<i>Salvia lavandulifolia</i> Vahl.	151	A C
Satureja montana L.	23	С
Silybum marianum (L.) Gaertn.	13	A C
Thymus mastichina L.	132	A B C
Thymus vulgaris L.	75	A B C
Thymus zygis L.	72	A B C

RESULTS OF CHEMICAL CHARACTERIZATION

<u>Common hawthorn</u>: Its metanolic extract was rich in flavonoids, which content was greater than 120 mg/kg; kanferol, isovitexina, quercitrina and apigenina were the principals. The content in fenolic acids ranged between 3,97 and 16,97 mg/kg being ursolic and isovainillic acids the more importants.


<u>Great yellow gentian</u>: six populations with more of 30ppm of gentiopricrosido and other 6 populations with more of 2ppm of amarogentina have been found.

St. John's wort: five populations with more than 10.000ppm of hipericin have been found.

Spike lavender: eleven populations with more than 7% of essential oil yield have been harvested. All the samples collected were very rich in camphor and linalol, overcoming the maximum values of ISO 4719.

<u>Rosemary</u>: seven populations have been selected with a yield of essential oil superior to 3% and proportions of 1.8-cineol between 4 and 31%. In the extract the rosmarinic acid ranged between 1 and 71mg/kg.

Spanish sage: four populations have been collected with yield in essential oil superior to 2.5%. The concentration of the antioxidants in the extract, carnosol and carnosic acid, ranged between 0.1 and 15 mg/kg and 0.1 and 8 mg/kg respectively. **<u>Cotton thistle</u>: content of the majority components in the metabolic extract,** apigenina, kanferol and luteolina varies between: 5.6-98.5, 8.7-78.0 and 0.3-36.5 ppm respectively. The rest of the identified components: miricetina, hesperidina, xantona, apigenina-7-glucosido and arbutina are present in smaller concentration. Spanish marjoram: nine populations have been found with a yield in essential oil superior to 3% and five populations with more than 50% content in 1,8-cineol. Se han encontrado los quimiotipos1,8-cineol >70% y linalol >50%. Also, its have been

found quimiotypes 1,8-cineol >70% and linalol >50%.

<u>Common thyme</u>: nine populations have been found with a yield in essential oil superior to 3 % and five populations with more than 50% content in 1,8-cineol. <u>Moroccan wild thyme</u>: Three populations have been collected with a yield superior to 1,5%, and four populations with a content in tymol >50%. Also, it has been found quimiotypes carvacrol, 1,8-cineol and linalol.

RESULTS OF CONSERVATION Genebank standards (FAO/IPGRI) Seed drying procedures: drying using a desiccant (silica gel): storage in sealed moisture-proof

containers with desiccant. Very low moisture contents (around 3%).

<u>Germination</u>: seed viability >85%.

<u>Seed containers</u>: it is important to assure that the seeds do not re-absorb moisture during the conservation, especially if they are kept in cold chambers, using moisture-proof containers. **Storage**:

Base collection: preferred -18°C and no reusable containers. Not for distribution.

Active collection: 0° C and reusable containers. Available for multiplication and distribution.

Species	Conditions	Period	Germinatio n % SE
Great yellow gentian	15°C, Cs & GA ₃	60 days	63
St. John's wort	15/25°C, 16h P W & D	50 days	95 2.18
Spanish lavender	15°C, 16h P W&D	30 days	92 3.16
Spanish marjoram	15°C, 16h P W&D	30 days	99 0.86
Common thyme	15°C, 16h P W&D	30 days	98 1.73
Moroccan wild thyme	15°C, 16h P W&D	30 days	95 0.87

P Photoperiod, Cs Cold stratification, W& D Wetting & Drying, SE Standard error